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Abstract  

Metrics including Cohen’s kappa, precision, recall, and F1 are common measures of performance for 

models of discrete student states, such as a student’s affect or behaviour. This study examined discrete 

model metrics for previously published student model examples to identify situations where metrics 

provided differing perspectives on model performance. Simulated models also systematically showed the 

effects of imbalanced class distributions in both data and predictions, in terms of the values of metrics and 

the chance levels (values obtained by making random predictions) for those metrics. Random chance 

level for F1 was also established and evaluated. Results for example student models showed that over-

prediction of the class of interest (positive class) was relatively common. Chance-level F1 was inflated by 

over-prediction; conversely, maximum possible values for F1 and kappa were negatively impacted by over-

prediction of the positive class. Additionally, normalization methods for F1 relative to chance are discussed 

and compared to kappa, demonstrating an equivalence between kappa and normalized F1. Finally, 

implications of results for choice of metrics are discussed in the context of common student modelling 

goals, such as avoiding false negatives for student states that are negatively related to learning. 

 

Notes for Practice 

• Previous research has shown that choice of metric plays a key role in training and evaluation 
of student models, focusing primarily on metrics intended for models that produce 
probabilistic predictions of student outcome variables 

• Imbalances in labelled data are quite common in student modelling tasks, and have been 
shown to impact metrics used for machine-learned student models 

• This paper explores the impact that predicted class proportions and data class proportions 
have on discrete model metrics including Cohen’s kappa, precision, recall, and F1, and 
formulates a random-chance level F1 measurement that is adjusted for imbalances 

• Results on real-world student models and simulated models show that best practices include 
reporting multiple metrics for discrete student models, and comparing F1 scores to the 
appropriate chance level to avoid over- or under-estimating model performance 
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1. Introduction 

Predicting student state, actions, or outcomes (student modelling) is one of the largest and most diverse areas within 

learning analytics research (see Chrysafiadi & Virvou, 2013; Desmarais & Baker, 2012; Henrie, Halverson, & 

Graham, 2015; Papamitsiou & Economides, 2014 for recent reviews). Student models can ascertain a host of student 

attributes (e.g., how much does a student know about the topic they are currently studying), and can detect and 
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predict important learning-related states students may be in. These states might include a student’s current 

emotional, cognitive, or behavioural state (Bailey & Konstan, 2006; Baker, Corbett, Koedinger, & Wagner, 2004; 

Baker, D’Mello, Rodrigo, & Graesser, 2010; Bixler & D’Mello, 2015; Bosch, D’Mello, Ocumpaugh, Baker, & 

Shute, 2016; Calvo & D’Mello, 2010; Walonoski & Heffernan, 2006). Such models are tremendously important 

because they allow greater scientific understanding of learning, enable the construction of more effective and 

enjoyable computerized learning environments, and drive better feedback for both teachers and students. Evaluating 

the accuracy (i.e., model performance) of such student models is thus crucial to answer questions such as whether 

model A is “better” than model B, or whether a model intended to intervene when a student becomes bored is better 

than a model that simply triggers an intervention randomly. 

Assessing whether a student is bored or not is an example of a discrete modelling task. The student model must 

make a binary decision about whether the student is bored, or provide a probability estimate that the student is 

bored. Other examples include modelling student attention (Raca, Kidzinski, & Dillenbourg, 2015), off-task activity 

(Bosch et al., 2016), or exploitive behaviour (a.k.a. “gaming the system”; Baker et al., 2004). Such modelling tasks 

are common in educational environments, as a variety of student states are related to learning (Bower, 1992; Kort, 

Reilly, & Picard, 2001; McVay & Kane, 2009; Nissen & Bullemer, 1987; Pekrun, Goetz, Titz, & Perry, 2002; 

Smallwood, Fishman, & Schooler, 2007; Trigwell, Ellis, & Han, 2012). Evaluating models for these tasks typically 

results in a single number or a small set of numbers intended to succinctly characterize the performance of the 

model. These evaluation methods are typically referred to as metrics, though they are not often “metric” in the 

mathematical sense (Lawvere, 1973). Different metrics are required for student models that detect discrete states 

than those models that detect or predict continuous states and outcomes, such as final percentage grade in a course. 

There are three categories of metrics for common types of student models. The first is metrics for continuous-

valued (real number) predictions of continuous-valued outcome variables. For example, root mean-squared error 

could measure the difference between predicted and actual time spent on the next problem. The second type of 

metric is for models generating continuous-valued predictions for discrete (e.g., integer or binary) outcomes, such 

as a model that predicts the probability that a student will answer the next problem in a sequence correctly. Metrics 

for this type of model have been well-researched (Pelánek, 2015), and include metrics such as area under the 

receiver operating characteristic curve (AUC) and area under the precision-recall curve (AUPRC). In an example 

application, a logistic regression model might be trained to predict the odds (a continuous prediction) of a student 

completing an online course (a discrete outcome) based on records of their actions in a learning environment 

(Robinson, Yeomans, Reich, Hulleman, & Gehlbach, 2016). In this case, this continuous prediction can be used to 

make a binary decision — such as whether or not to intervene for low-performing students — by choosing a 

threshold after model training. Choosing this threshold directly impacts the proportion of each class predicted by 

the model, and thus also influences the chance level (values obtained by making random predictions) of metrics 

discussed in this article. 

The main focus of this article is a third, less well-explored category of metrics: those intended for models with 

discrete predictions of discrete outcomes. For example, a model to predict whether a student is bored or not (a 

discrete outcome) may be created with a nearest neighbour classifier. This classifier produces discrete predictions 

(bored/not bored) based on whether a student is most similar (in terms of facial expression, speech patterns, eye 

movements, etc.) to another student who is bored or not bored. Several types of models, including rule learners, 

such as RIPPER (Cohen, 1995), and decision trees, such as C4.5 (Quinlan, 1993), produce discrete predictions and 

require appropriate metrics to measure performance. The metrics we examine in particular are proportion correctly 

classified (commonly referred to simply as accuracy), Cohen’s kappa, F1 score, precision, and recall (see section 3 

for definitions). 

Discrete model metrics typically represent model performance as a single number. Using a single number is 

needed for comparing and sorting models by performance, to select the best model from a pool of candidates, or to 

examine trends in various models. There are pitfalls associated with reducing evaluation of a model to a single 

number, however. These pitfalls are primarily related to imbalances in the proportions of ground truth class labels 

(i.e., data class proportions) and imbalances in label predictions made by a student model (i.e., predicted class 

proportions) that can cause metrics to provide conflicting measures of performance (e.g., high precision but low 

recall, or vice versa). The effect of data class proportions has been quantified for some discrete model metrics (e.g., 

accuracy, Cohen’s kappa, Krippendorf’s alpha, F1 score; Jeni, Cohn, & De la Torre, 2013), but the influence of 

predicted class proportions is less well-studied and equally complex. 
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One might expect that predicted class proportions should match data class proportions, and that it is thus less of 

a concern. There are situations where this may not be the case, however. For example, Figure 1 illustrates varying 

the decision threshold of a logistic regression model that predicts whether a university student is enrolled as a 

science major or not (Bosch et al., 2018). In this case, kappa and precision can be improved by predicting fewer 

positive cases (46.2%) than the data class proportions suggest (68.3%). Furthermore, in situations where false 

positive or false negative predictions have unequal importance, a model might favour one over the other. For 

example, suppose a model has been developed to predict when a student is experiencing task-unrelated thoughts 

(mind wandering) so that a pop quiz can be administered to measure the effect of mind wandering on retention. 

Mind wandering might occur during 23% (positive data proportion) of the learning session (e.g., Hutt et al., 2017), 

but administering quizzes during 23% of the learning session would be far too many quizzes. Thus, a good model 

might make only a few predictions of mind wandering, focusing on avoiding false positives but allowing for many 

false negatives. However, the performance of this model might appear better (or worse) than expected according to 

popular metrics. 

Proportion correct (accuracy) is especially influenced by data class proportions and predicted class proportions, 

as can be seen in a simple example. Supposing a student is labelled as off task in 5% of cases in a dataset, then a 

model could be 95% correct by simply labelling all instances as on task (100% positive class predictions). Similarly, 

precision, recall, and F1 do not correct for random chance levels that vary due to predicted and data class proportions. 

Recall and F1, in particular, can be inflated by over-predicting the positive class. Nevertheless, they offer a valuable 

perspective into model performance, and are reported in student modelling and related literature (Cetintas, Si, Xin, 

& Hord, 2010; Chen, Vorvoreanu, & Madhavan, 2014; Neiberg, Elenius, & Laskowski, 2006; Pardos, Baker, San 

Pedro, Gowda, & Gowda, 2013; Soleymani, Pantic, & Pun, 2012; Stewart, Bosch, & D’Mello, 2017; Valstar, Mehu, 

Jiang, Pantic, & Scherer, 2012). Thus, understanding the chance levels for these metrics is important. 

 
Figure 1. Precision and kappa versus positive prediction rate, illustrating a logistic regression model for which 

mismatching predicted and data class proportions improves accuracy. 

 

1.1. Current Contribution 

This article therefore makes two main contributions: 1) We establish and compare chance levels for these metrics 

where chance is not well defined (precision, recall, and F1), and 2) We compare the effects of data class proportions 

and predicted class proportions on discrete model metrics (precision, recall, F1, and kappa) with real and simulated 

student models, providing guidance for which metrics to use in different scenarios and how multiple metrics provide 

different perspectives into model performance. 



 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 
3.0 Unported (CC BY-NC-ND 3.0) 

89 

For the first contribution, we consider chance levels of metrics with respect to a specific predicted class (e.g., 

precision of frustration predictions from a model of student affect) referred to as the positive class. In the second 

contribution, metrics are compared for student models on various datasets intended to illustrate the effects of data 

class proportions and predicted class proportions on these metrics. These experiments also reveal situations where 

it is preferable to consider one metric over another, as well as situations where it is necessary to consider multiple 

metrics to obtain a complete picture of classification accuracy. 

These contributions are unique in several respects. First, this article is the first to formulate chance-level F1 for 

common use cases in student modelling. We also relate chance-level F1 to kappa, while making explicit the 

assumptions underlying chance level and normalization. Second, while prior research has explored the effects of 

data class proportions for some modelling tasks (e.g., Jeni et al., 2013), this article is the first to explicitly consider 

and compare the effect of predicted class proportions on metrics for discrete student models. Prior work has largely 

focused on models that produce continuous-valued predictions (Pelánek, 2015) or concluded that such metrics are 

preferable (Jeni et al., 2013). However, not all student models produce continuous predictions, and thus in-depth 

evaluation of discrete model metrics is also needed. 

2. Related Work 

We discuss research comparing metrics for model evaluation. We first review work concerning discrete metrics in 

general, then discuss work specifically related to student modelling (and similar tasks), and then review exemplary 

work on metrics for discrete models in other domains. 

2.1. Research on Discrete Metrics 
Jeni et al. evaluated the effect of data class proportions on various metrics (Jeni et al., 2013), including metrics for 

discrete predictions (accuracy, kappa, F1, and Krippendorf’s alpha), and continuous predictions (AUC and area 

under the precision-recall curve). They created simulated datasets and models to precisely examine the effects of 

data class proportions. Of the metrics considered they found all discrete metrics were affected by imbalanced data 

class proportions, but that AUC was not. For example, kappa was reduced by as much as ≈80% (from .6 to .1) when 

data imbalance was increased from a 1:1 ratio of instances of two different classes to a 50:1 ratio. 

In the same paper (Jeni et al., 2013), the authors trained models on three real datasets to detect the presence or 

absence of facial action units, which measure the activation of facial muscles (Ekman & Friesen, 1978). Results on 

action unit datasets replicated their findings regarding the effect of simulated data class proportions. For example, 

F1 averaged across all three action unit datasets was .28, but after sampling the datasets to balance the data class 

proportions, F1 increased to .70. Upsampling, downsampling, or re-weighting training data is possible and even 

common in practice. However, such sampling is not possible in applications of models to new data where labels are 

not known, as is usually the case.1 Thus, performance is typically evaluated on testing data with the true data class 

proportions. However, modifying the testing data class proportions (as in Jeni et al., 2013) does illustrate one of the 

dramatic effects data class proportions can have. The work of Jeni et al. is particularly relevant because they 

considered metrics for models that produce discrete predictions. They did not, however, report the effect of predicted 

class proportions (their simulated models did not have imbalanced predicted class proportions), nor did they discuss 

the relationship between data class proportions, predicted class proportions, and chance levels of the metrics. 

Lobo, Jiménez-Valverde, and Real (2008) evaluated the AUC metric for models with probabilistic predictions. 

They noted several flaws that are relevant to student models. Most notably, they observed that AUC evaluates 

performance across all possible prediction thresholds. Model performance is evaluated where all instances except 

one are classified as positive, all but two classified as positive, and so on. Thus, the model is evaluated at thresholds 

where it would not realistically be used in a learning context (e.g., a student model that predicts students are bored 

                                                           
1 For example, Hutt et al. (2017) trained a model to predict when students were mind wandering while using an intelligent 

tutoring system, with the goal of applying the model in real-time to new students. In this real-time application, whether students 

are mind wandering or not is unknown — hence the need for a predictive model. Thus, data cannot be sampled in real-time to 

provide equal class proportions to the model. The same applies to student models intended to predict emotion, future problem 

correctness, or other states and outcomes. The goal of evaluating model performance on unseen testing data is to measure how 

accurate a model is likely to be in such a real-world application. Sampling the testing data to create balanced data class 

proportions would thus provide an inaccurate perspective of what the model performance would be when applied (at which 

point the model would encounter the true data class proportions). 
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99% of the time). They also noted that false positive and false negative errors are considered equally. In practice, 

for a student model it is possible that one type of error is more serious based on context. For example, a missed 

instance of frustration in an affect detection model might be preferable to a missed instance of boredom because 

boredom can be more detrimental to learning (Baker et al., 2010). To help address these issues, Lobo et al. (2008) 

recommend reporting sensitivity and specificity (i.e., recall for both positive and negative classes), though this does 

not represent model performance as a single number. 

Powers (2011) discussed the biases of discrete model metrics, including precision, recall, and F1. Powers noted 

that the typical usage of precision, recall, and F1 is to measure the performance of a model with respect to only the 

positive class in binary models. Importantly, this article established chance-corrected measures for precision and 

recall, referred to as Markedness and Informedness respectively. Chance precision was given as the base rate of the 

positive class as predicted by the model, while chance-level recall was given as the original base rate of the positive 

class in the data. These are the same precision and recall chance levels we report below. Notably, however, chance-

level F1 was not established. Using multiple metrics such as Markedness and Informedness does provide additional 

insight into a model, but single-value metrics such as F1 are necessary for model ranking and selection. 

2.2. Metrics for Evaluating Student Models 

Pelánek (2015) evaluated a set of metrics for student models, focusing primarily on models of student knowledge 

such as Bayesian knowledge tracing (Baker, Corbett, & Aleven, 2008; Desmarais & Baker, 2012). Student 

knowledge models typically predict continuous estimates of knowledge, such as the probability that a student has 

mastered a specific topic, rather than discrete predictions. In Pelánek (2015), example models demonstrated flaws 

in some commonly reported metrics, including mean absolute error (MAE) and AUC. MAE was shown to favour 

models with predictions that did not reflect the true probabilities of classes, instead being biased toward models that 

overestimate the probability of the majority class. Instead, root mean squared error (RMSE) was recommended as 

a preferred metric, at least for models of student knowledge. RMSE requires continuous-valued predictions, 

however, so it is unsuitable for discrete predictions (e.g., from a decision tree with only five leaves). Discrete model 

metrics were mentioned, including accuracy, kappa, precision, recall, and F1, but not evaluated. 

Gardner and Brooks (2017) surveyed a wide range of publications that reported student models in massive open 

online courses. They found that accuracy, AUC, F1, precision, recall, and kappa were the most commonly reported 

metrics. Other than AUC, which requires continuous-valued predictions of discrete outcomes, the remaining metrics 

are for discrete predictions of discrete outcomes. This survey confirmed the prevalence of these metrics in student 

modelling research. 

2.3. Discrete Models in Other Domains 
F1 is commonly used in the field of medicine to evaluate models (e.g., for detecting cancer in images or diagnosing 

illness). For example, Roux et al. (2013) compared the results of several different teams competing to detect mitosis 

in microscope images of breast cancer cells. Data class proportions were extremely imbalanced, with less than 0.3% 

of all instances being positive. Teams produced predictions with greatly varying predicted class proportions as well, 

ranging from just 28 positive predictions to 35,661, though there were only 100 positive cases in the data. Results 

demonstrate some of the effect of predicted class proportions on both precision and recall — the team with the most 

over-prediction scored the highest recall (most true positives), but also the lowest precision due to many false 

positives. 

Hripcsak and Rothschild (2005) noted that in ground truth coding tasks where reliability needs to be assessed, 

F1 approaches kappa as the proportion of negative cases grows. In modelling tasks such as mitosis detection where 

imbalance in data class proportions is extreme (Roux et al., 2013), chance-level F1 approaches zero because chance-

level precision also approaches zero. This is particularly interesting because, as we show below, F1 and kappa are 

equivalent after controlling for F1 chance level. Hripcsak and Rothschild’s findings hint at this relationship between 

F1 and kappa by comparing them in a situation where chance level for both is the same (i.e., zero). 

Forman (2003) studied various feature selection methods in the domain of text classification, including methods 

based on optimizing discrete classification metrics. They ranked features (words of the text) according to metrics 

calculated by classifying a text based on that word alone, and then selected the best features. They considered F1 as 

one of the metrics, noting that since it is calculated from the positive class it often leads to poor precision. They also 

noted that imbalanced data class proportions were related to a reduction in F1 score. Our findings illuminate both 
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of these phenomena in the context of student model evaluation and suggest that chance level plays a key role in 

similar observed patterns. 

3. Method 

We first briefly describe chance level for Cohen’s kappa, which is an inherent part of the definition of the metric. 

We then explore how F1 chance level is defined for several different scenarios, and finally describe how F1 and 

other metrics discussed in the introduction are employed to evaluate student models on real and simulated datasets. 

Note that metrics and chance levels are presented in terms of intuitive variables such as “Number of correct positive 

classifications,” but can also be described in terms of the cells of a confusion matrix (see Table 1 for an example): 

true positives, true negatives, false positives, and false negatives. For example, “Number of positive classifications” 

is equal to true positives + false positives. 

3.1. Kappa Chance Level 

It is important to understand the chance level of a metric to evaluate the extent to which a model makes 

classifications better than a random baseline. Kappa corrects for predicted class proportions by subtracting the 

accuracy of a model that makes random predictions at the same rate as the model being measured (same predicted 

class proportions). The resulting value is then normalized so that it is expressed as a proportion of the possible 

improvement over chance level (equation 1). 

 

 𝑘𝑎𝑝𝑝𝑎 =  
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐶ℎ𝑎𝑛𝑐𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝐶ℎ𝑎𝑛𝑐𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 (1) 

 

The definition of random chance accuracy employed in calculating kappa and the choice of normalization 

illustrate one way in which metrics for discrete student models, like accuracy, can be interpreted relative to chance 

levels. 

3.2. Formulation of F1 Chance Level 
The F1 metric (equation 4) consists of the harmonic mean of precision (equation 2) and recall (equation 3), and thus 

chance-level F1 can be formulated from the chance levels of these individual components. We describe two 

scenarios that occur when modelling students, and how precision, recall, and F1 chance levels relate to these. 

 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 (2) 

 

 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎
 (3) 

 

 

 𝐹1 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

 

3.2.1. F1 Chance Level with Known Data and Predicted Class Proportions 

First, we consider the case in which the proportion of the positive class in a particular dataset is known, as well as 

the proportion of the dataset that the model predicts as the positive class. This is the most common scenario in 

student modelling, especially for machine-learned models where labelled training and testing data clearly indicate 

the data class proportions. A model in this scenario will produce labels when applied to testing data, which thus 

estimate the predicted class proportions. The question of random chance level can then be defined as “What F1 

would result if a model made classification decisions with a random number generator, with the same number of 

predictions of each class as the model being compared against?” An equivalent way of formulating this baseline is 

to take the predictions of a model and randomly shuffle them, so that the same predicted class proportions are 

preserved (same number of predictions of each class) but the associations between predicted and true labels are 
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randomized. 

The chance-level recall is equal to the predicted positive class proportion because each positive instance in the 

data has a predicted positive class proportion probability of being labelled correctly as positive. For example, 

consider a dataset with 80 positive instances, 20 negative instances (80% data positive class proportion), and a 

student model with predicted positive class proportion of 70%. For any one of the 80 positive instances, there is a 

70% chance the instance will be classified correctly as positive due to the predicted class proportions. Thus, 80 × 

70% = 56 instances will be classified correctly, and so recall is 56 ÷ 80 = 70%. 

Similarly, chance-level precision is equal to the data’s positive class proportion because each positive prediction 

made by the model has a data positive class proportion probability of truly being a positive instance. In the same 

example as above, the data positive class proportion is 80%, and so any positive prediction randomly made has an 

80% chance of being a correct positive prediction. If the model makes 70 positive predictions, 70 × 80% = 56 

positive instances will be correctly classified, and thus precision is 56 ÷ 70 = 80%. 

Knowing chance-level precision and recall, chance-level F1 can be easily constructed (equation 4) by 

substituting chance levels for precision and recall. In the previous example, chance-level F1 is therefore 2 × .80 × 

.70 ÷ (.80 + .70) = .747. The student model in question should thus exceed this number to indicate above-chance 

performance. Comparing F1 to a naïve baseline without considering imbalances in data and predicted class 

proportions can result in an inaccurate picture of performance. In the above example, ignoring the effect of predicted 

class proportions on F1 would allow a randomized classifier to appear above chance by inflating recall. A model 

operating at the random-chance level F1 of .747 might be mistaken for being superior to a naïve baseline (F1 = .700) 

that assumes no imbalance in predicted class proportions. 

This raises a question about how F1 and its corresponding chance level should be compared, and perhaps 

combined into a single number. Kappa (equation 1) subtracts chance accuracy from observed accuracy and 

normalizes the result on the [–1, 1] interval, which may be restricted if predicted class proportions are imbalanced 

(Figure 4). If the same approach is applied to F1 (i.e., 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹1 = (𝐹1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝐹1) (1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝐹1)⁄ ), the 

resulting expression is equivalent to kappa. That is, 

 

 
𝐹1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝐹1

1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝐹1
= 𝑘𝑎𝑝𝑝𝑎 =

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 (5) 

 

This equivalence is easily verified by expressing F1, chance F1, and kappa in terms of confusion matrix variables 

(true and false positives, true and false negatives) and simplifying the equivalence in equation 5 with a computer 

algebra system (e.g., the Solve function in Wolfram Mathematica). Clearly there is a close connection between the 

two metrics. Even though F1 is not equivalent to accuracy alone, when accuracy and F1 are adjusted for their 

respective chance levels the result is the same. 

3.2.2. F1 Chance Level with Unknown Data Class Proportions 

Second, we consider the case where the data class proportions are unknown or unclear. This case is relatively rare 

but does occur. For example, Stewart, Bosch, Chen, et al. (2017) detected students’ wandering minds from facial 

expressions, with ground truth labels derived from self-reports. However, students only self-reported positive 

instances, so the negative instances were drawn from periods of time well before or after the self-reports. The actual 

rate of occurrence of positive instances is unclear in this situation, so the authors estimated the data class proportions 

from related literature. 

A similar situation arises when a student model is not derived from data at all but must be applied to unseen 

data. For example, a simple model might be created where a computer programming student is predicted as 

frustrated if they experience three compiler errors in one minute. The data class proportions and predicted class 

proportions are both unknown for this model until some data is collected, at which point the predicted class 

proportions could be determined from the model, but the data class proportions would remain unclear until 

frustration labels were obtained from another source (e.g., expert annotation). In this case the chance-level precision, 

recall, and F1 formulations are based on approximations of data and prediction class proportions. Thus, it is 

important to note when testing and reporting models that chance levels for these metrics will also be approximate. 
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3.3. Evaluation of Metrics on Real and Simulated Student Models 
We evaluate F1, precision, recall, kappa, and accuracy on real and simulated student models to illustrate situations 

where these metrics provide different perspectives on the same models. For all models, we compare metrics as well 

as chance levels. First, we evaluate several student models reported in the literature. These models make discrete 

predictions of student state, such as affect and behaviour, and thus require discrete model metrics for evaluation. 

Confusion matrices for these models were obtained from publications where possible, or from the corresponding 

authors where confusion matrices were not reported. 

3.3.1. Gaze-Based Mind Wandering Detection 

Hutt et al. (2017) detected mind wandering, an attentional state in which thoughts drift away from the task at hand 

to task-unrelated topics — often without immediate awareness that attention has lapsed (Smallwood & Schooler, 

2015). They collected self-reports of mind wandering from students with randomly triggered probes as the students 

interacted with an intelligent tutoring system in a classroom. Gaze was simultaneously recorded, and mind 

wandering was detected from their gaze patterns with a machine-learned model. There were 2,334 instances 

classified, with 23% reported as mind wandering. In this article, we consider only the best-performing model 

(according to F1) from among models reported. 

3.3.2. Face-Based Mind Wandering Detection 

Stewart, Bosch, & D’Mello (2017) detected self-reported mind wandering from facial features in two laboratory 

studies. Students in one study watched a narrative film, while in the other study students read an instructional 

scientific text. One of their primary goals was to measure how well face-based mind wandering detectors 

generalized across task domains. Thus, they downsampled data from the two studies to have equal numbers of 

instances (1,100 each) and equal mind wandering rates (25%). In this article, we consider the model reported with 

the highest performance and generalization performance combined (F1 within-domain + F1 across-domain). This 

model was trained on data from the narrative film-watching task, but applied to both datasets, yielding two sets of 

predictions. 

3.3.3. Face-Based Affect and Behaviour Detection 

Bosch et al. (2016) detected several affective states (boredom, confusion, delight, engagement, frustration) and off-

task behaviour in a classroom context, with machine-learned models and features derived from facial action units. 

Students played an educational game designed to teach fundamental physics concepts, while trained observers 

recorded their affective and behavioural states according to the Baker Rodrigo Ocumpaugh Monitoring Protocol 

(BROMP; Ocumpaugh, Baker, & Rodrigo, 2015). The base rates (data class proportions) of each affective state 

varied, from 2.7% for confusion to 74.7% for engagement. The number of instances available for classification 

varied slightly as well due to feature extraction differences between states, ranging from 1,003 to 1,385 instances. 

3.3.4. Interaction-Based Detection of Gaming the System 

Paquette, de Carvalho, and Baker (2014) identified 13 interaction patterns (sequences of actions taken by a student) 

that were predictive of students attempting to “game the system” in a computerized learning environment for 

teaching algebra. Gaming the system occurs when a student attempts to progress through a learning task by abusing 

the affordances of the learning environment (e.g., repeatedly pressing a hint button until the final answer is shown). 

A final model was constructed from the 13 interaction patterns and tested on a holdout set of 2,599 instances (6.8% 

gaming). 

3.3.5. Interaction-Based Affect Detection 

Botelho, Baker, and Heffernan (2017) detected confusion, concentration, boredom, and frustration from students’ 

interaction-log files in a web-based learning platform, which was integrated in both classroom and homework 

contexts. Trained observers recorded students’ affective states using BROMP. Data class proportions were highly 

prevalent — the least common affective state (frustration) occurred in just 3.6% of instances. Concentration was 

the most prevalent state at 80.4%. There were 7,663 BROMP observations, though after discarding observations 

with low observer confidence and instances where there was no interaction data, final models were tested on 2,633 

instances. 

3.3.6. Simulated Student Models 

In addition to the models mentioned above, we constructed simulated models so that the effects of data class 

proportions and predicted class proportions could be systematically varied and compared. We constructed three 



 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 
3.0 Unported (CC BY-NC-ND 3.0) 

94 

types of simulated models. First, we fixed the data positive class proportion at .202 (mean of real student models 

examined) and varied the predicted positive class proportion to investigate the effect that prediction imbalance has 

on chance levels for precision, recall, and F1. Second, we varied both data class proportions and predicted class 

proportions to show the interaction of the two types of class proportions on chance-level F1. Finally, we also created 

simulated models with best-possible performance for various predicted class proportions with data class proportions 

fixed, to quantify the reduction in maximum performance due to predicted class proportions. 

Table 1 illustrates an example confusion matrix for the type of simulated model created to measure best-possible 

performance in the presence of imbalanced predicted class proportions. In this example, the data positive class 

proportion was 50% (500 positive instances out of 1,000 total), the predicted positive class proportion was 20% 

(200 positive predictions), and correctness was as high as possible given these imbalances. Kappa in this example 

was .400 and F1 was .571. 

 

Table 1. Example Simulated Model and Dataset   
Predicted 

  
Positive Negative 

Actual 
Positive 200 300 

Negative 0 500 

 

4. Results 

We first present results calculated from previously published student models, then systematically explore chance 

levels with simulated models. 

4.1. Example Student Models Built with Real Data 

Table 2 contains confusion matrices for each student model, metrics computed from the matrices, and chance levels 

for precision, recall, and F1. Several relevant trends are apparent in these models. First, the positive class is generally 

over-predicted in these models, which can be seen by comparing chance precision (data positive class proportion) 

to chance recall (predicted positive class proportion). In the most extreme example, the face-based boredom model 

predicted 37% of instances as the positive class while the rate of boredom in the data was just 4%. In fact, the only 

model where the positive class was not equal or over-predicted was the face-based engagement detection model, 

where the positive class was not the minority class. Mean data positive class proportion in these models was 20.2%, 

while mean predicted positive class proportion was 36.4%. This is a common pattern for student models with data 

imbalance and difficult prediction tasks, in that the positive class (the class of interest) is over-predicted to minimize 

false negatives or improve performance. 

Second, the variance in data and prediction imbalances led to a large range of F1 chance values, from .04 to .82. 

This illustrates how important it is to consider F1 chance values carefully when reporting model performance or 

selecting a best model. An F1 of .73 for the face-based engagement detection model might appear outstanding at 

first glance, but observing that a random number generator with the same prediction imbalance would result in F1 

= .66 (chance level) indicates that this result is more modest. Conversely, the interaction-based “gaming the system” 

detection model has F1 of only .39, which may appear relatively small, but chance level F1 is just .09. In fact, this 

model has the largest improvement in F1 versus chance level in terms of absolute difference. 

Third, the difference between accuracy and a simple majority baseline (predicting all instances as the majority 

class) further illustrates the importance of considering prediction imbalance, not only data imbalance. Model 

accuracies were actually below the majority baseline in every case except the interaction-based concentration 

detector. The majority baseline accuracy was overly conservative for these models, particularly where some over-

prediction of the positive class was acceptable or even desirable given the difficulty of a prediction task. Kappa, on 

the other hand, subtracts an accuracy baseline that is relative to both prediction and data imbalances. 
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Table 2. Metrics from Example Student Models Applied to Real Student Data 

Model TP FN FP TN Precision 

Chance 

Precision Recall 

Chance 

Recall F1 

Chance 

F1 Kappa Accuracy 

Majority 

Accuracy 

Gaze              

Mind wandering .161 .069 .431 .339 .27 .23 .70 .59 .39 .33 .09 .50 .77 

              

Face              

Mind wandering 

(within domain) 
.194 .056 .445 .305 .30 .25 .78 .64 .44 .36 .12 .50 .75 

Mind wandering 

(cross-domain) 
.190 .060 .493 .257 .28 .25 .76 .68 .41 .37 .07 .45 .75 

              

Boredom .024 .017 .347 .613 .06 .04 .58 .37 .12 .07 .05 .64 .96 

Confusion .011 .016 .245 .729 .04 .03 .42 .26 .08 .05 .03 .74 .97 

Delight .021 .009 .161 .809 .11 .03 .69 .18 .20 .05 .15 .83 .97 

Engagement .489 .258 .099 .154 .83 .75 .66 .59 .73 .66 .22 .64 .75 

Frustration .084 .059 .320 .537 .21 .14 .59 .40 .31 .21 .12 .62 .86 

Off task .029 .016 .171 .783 .15 .05 .65 .20 .24 .07 .18 .81 .95 

              

Interaction logs              

Gaming the 

system 
.036 .032 .081 .851 .31 .07 .53 .12 .39 .09 .33 .89 .93 

              

Confusion .006 .031 .044 .919 .12 .04 .16 .05 .13 .04 .09 .93 .96 

Concentration .730 .074 .115 .081 .86 .80 .91 .85 .89 .82 .35 .81 .80 

Boredom .047 .076 .079 .797 .37 .12 .39 .13 .38 .13 .29 .85 .88 

Frustration .007 .029 .035 .930 .17 .04 .19 .04 .18 .04 .15 .94 .96 

Note: TP, FN, FP, and TN refer to proportion of all instances predicted as true positives, false negatives, false positives, and true negatives respectively. 
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Finally, these models exhibited some complexity that was not captured well by kappa or F1 alone. The two models with 

most similar kappa values were the gaze-based mind wandering detection model (kappa = .09) and the interaction-based 

confusion detection model (kappa = .09). Conversely, F1 for the mind wandering model was .39, versus .04 for the confusion 

model. Some of the difference in F1 is explained by data imbalance, which was 4% confusion versus 23% mind wandering. 

However, the mind wandering model predicts 59% of instances as the positive class (mind wandering), while the confusion 

model over-predicted much less, with just 5% of instances predicted as the positive class. These differences between the two 

models were apparent in F1, and especially in precision and recall, but might have been missed in a comparison focused on 

kappa. On the other hand, the two models with closest F1 scores were the gaze-based mind wandering model (F1 = .39) and the 

interaction-based gaming the system model (F1 = .39). However, the gaming model was much better than chance (.39 vs. .09) 

while the mind wandering model was only modestly above chance (.39 vs. .33). Comparison of kappa (.09 vs. .33) or chance 

level F1 of these two models makes the difference apparent. 

4.1.1. Simulated Student Modelling Tasks 

We constructed simulated models to systematically evaluate and illustrate key trends that were apparent in the real student 

models. First, we studied the effect of prediction imbalance on chance-level random models. Figure 2 shows how chance recall, 

chance precision, and chance F1 vary as prediction imbalance increases when data imbalance is held constant at 20.2%, which 

was the mean data imbalance of the real student models discussed above.2 Prediction imbalance influences recall chance level 

linearly, because in a random student model there is a linear relationship between how many positive predictions are made and 

how many instances of the positive class are correctly identified. 

Importantly, the influence of predicted class proportions on chance-level F1 is the same as the influence of data class 

proportions. Figure 3 demonstrates the symmetrical effect of imbalances on chance-level F1 in more detail, varying both 

predicted and data class proportions in a model making random predictions. Chance-level is symmetrical along the diagonal. 

Figure 3 demonstrates another pattern, which is that the change in F1 chance level due to predicted class proportion is most 

notable when the data positive class proportion is also high (viz. the positive class is also the majority class). Similarly, data 

class proportions affect chance-level F1 most dramatically when the predicted positive class proportion is high. 

 
Figure 2. Effect of prediction imbalance on chance levels, with data imbalance fixed at 20.2%. 

 

 

                                                           
2 20.2% was chosen as a representation of common data class proportions, but chance levels vary due to predicted class 

proportions regardless of data class proportions. Even for a model with unequal data class proportions, it is possible to increase 

the recall and F1 chance levels of a random model by increasing the predicted positive class proportion. 
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Figure 3. Chance level of F1 while varying both data imbalance and prediction imbalance. Chance level is undefined when 

there are no instances or predictions of the positive class. 

 

 

We also systematically explored the influence of predicted class proportions on peak model performance by simulating 

best-possible student models that always achieve the best possible performance given the predicted class proportions, shown 

in Figure 4 and Figure 5. These models were generated by calculating the maximum possible true positive and true negative 

rates of a model that predicts the positive class at a certain rate. For example, over-predicting models always had perfect recall 

but imperfect precision (due to false positives), while under-predicting models always had perfect precision but imperfect 

recall (due to false negatives). 

First, Figure 4 illustrates a situation where the data class proportions are highly imbalanced such that positive class is the 

minority. Data positive class proportion was fixed at 20.2%, which was the mean proportion in the real student models 

discussed above. F1 and kappa were maximized when predicted positive class proportion was also 20.2%, because the best 

possible model makes no false positives due to over-prediction or false negatives due to under-prediction. However, the best 

possible performance was notably diminished when predicted class proportions were imbalanced relative to data, as is often 

the case with student models. Furthermore, the best possible kappa and F1 scores were similar near the point at which prediction 

and data class proportions matched but diverged as the predicted positive class proportion increased. 
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Conversely, when data class proportions were highly imbalanced such that the positive class was the majority (90% in this 

example), different patterns emerged (Figure 5). Most notably, best possible F1 differed dramatically versus best possible 

kappa across most predicted class proportions, while with a minority positive class (Figure 4) the difference was less drastic. 

Additionally, the difference between chance-level F1 and best possible F1 was less when the positive class was the majority. 

 
Figure 4. Performance of the best possible model with data imbalance fixed at 20.2% and varied prediction imbalance. 

 
Figure 5. Performance of the best possible model with data imbalance fixed at 90% and varied prediction imbalance. 

5. General Discussion 

We were interested in systematically evaluating the biases of key performance metrics (precision, recall, F1, kappa, and 

accuracy) for student models with discrete predictions and outcomes. To explore this topic, we provided mathematical 
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formulations for random chance-level F1 baseline and evaluated F1 and other metrics on real and simulated models with 

differing data class proportions and predicted class proportions. 

5.1. Main Findings 

From previous research (Jeni et al., 2013), we expected F1 would be influenced by imbalanced data class proportions (skew). 

We found that even in an imbalanced dataset, the maximum value of F1 is not attenuated if the prediction imbalance exactly 

matches data imbalance, but in a more realistic scenario with over-prediction of the positive class, it is indeed (Figure 4). We 

also found that the random chance level of F1 is influenced by prediction. Specifically, a model making random predictions 

can increase its F1 score by predicting a higher proportion of the positive class. For instance, in the Figure 2 example with data 

positive class proportion = .202, a random model with matching predicted class proportions will have F1 = .202. However, the 

random model F1 can be increased to .350 simply by over-predicting the positive class. 

We also noted, however, that over-prediction is common in examples of published discrete student models (Table 1). 

Indeed, over-prediction may often be desirable to minimize false negatives, since some infrequent student states have important 

relationships with learning (Baker et al., 2010; Beck & Rodrigo, 2014; Cocea, Hershkovitz, & Baker, 2009; Pardos et al., 

2013). Therefore, it is important to acknowledge that F1 (and recall) may be positively skewed by over-prediction, and to 

compare to the appropriate chance level. Our analyses also showed that accuracy often falls below the majority baseline due 

to over-prediction of the minority class (Table 2), and thus might not be the most appropriate metric for student models. 

Simulated student models demonstrated the effect that predicted class proportions have on performance. For common 

values of data class proportions, the best possible F1 was reduced from 1 to as low as .336 by over-prediction, while kappa was 

reduced from 1 to as low as 0 (Figure 4). It is no surprise that over-prediction lowers maximum performance, but it is important 

to note that both kappa and F1 were reduced to zero by total under-prediction of the positive class, while F1 was not reduced to 

zero (but kappa was) by over-prediction. As such, interpretation of F1 is particularly dependent on whether the model is over- 

or under- predicting. Furthermore, when the positive class was the majority, we noted that the best possible F1 differed little 

from chance-level F1 (Figure 5) and both were higher than the best possible kappa for almost all levels of predicted class 

proportions. Thus, if measuring model performance with F1 in a dataset with a large positive class majority (e.g., 90% in Figure 

5), it should be noted that F1 will not greatly exceed chance level even in a relatively accurate model. 

5.2. Implications 

Some recommendations for examination of metrics emerge from these findings. First, a single metric by itself is likely to either 

hide important differences between models, as illustrated in Table 2 where models with similar kappa could result in very 

different F1, and vice versa. Thus, it may be helpful to examine both kappa and F1 or to report chance level F1 along with F1. 

Furthermore, interpretation of kappa is especially difficult as it captures positive and negative classes in a model equally, while 

F1 frames performance in terms of the positive class alone. However, both F1 and kappa are cumbersome to interpret as the 

definitions are complex (equations 1 and 4). Precision (equation 2) and recall (equation 3), on the other hand, are simple ratios 

of intuitive values that can lend interpretability to a model. 

Examining and reporting multiple metrics for student models is thus likely to be illuminating, but is not a panacea for 

model evaluation and reporting issues. Reporting multiple metrics does not avoid the problem of reporting chance level — 

rather, multiple chance levels should also be reported (e.g., one each for precision, recall, and F1 if all three are reported). 

Furthermore, in certain situations it may be necessary to evaluate models based on a single number. This is the case when one 

unique model must be selected out of many. For example, single-metric comparisons can also occur during the training of a 

single model when tuning hyperparameters with nested cross-validation, as is the case with forward feature selection (Guyon 

& Elisseeff, 2003). In such situations, it is not possible to compare models across multiple metrics, because one model may be 

better according to one metric and worse according to a different metric. It is therefore sometimes necessary to rank models 

by a single metric chosen to favour model goals such as minimizing false positives or false negatives. One could also combine 

metrics via an averaging function (e.g., as F1 is to precision and recall) in an attempt to select models avoiding the pitfalls of 

individual metrics. However, the chance level of this averaged metric will have to be calculated and considered. For example, 

combining F1 and AUC by adding them effectively creates a new single metric with its own chance level (F1 chance + AUC 

chance) that needs to be accounted for. 

The choice of metric for ranking, selecting, and optimizing models influences the results. Thus, choosing an appropriate 

metric is crucial. We found that the maximum possible kappa was highest when predicted and data class proportions were 

equal, yet predicted class proportions do not affect kappa. Thus, kappa is likely a suitable metric for model selection in 

situations where matching predicted class proportions to data is desirable. Optimizing a model based on recall will likely lead 

to excessive over-prediction, since recall is maximized when a model predicts everything as the positive class. Hence, F1 may 
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be a better choice when false negatives should be minimized, since it balances recall with precision. Precision penalizes false 

positives alone, and thus is an appropriate choice when false positives should be minimized. For example, a computerized 

learning environment might administer a relatively large intervention (such as giving the student a 5-minute break) if the 

student is bored, but only if the student model has a small chance of predicting false positives. Conversely, a model that over-

predicts would be more suitable for “fail-soft” interventions such as discretely alerting a teacher to observe the student and 

assess the need for further action. Furthermore, for models with underlying continuous predictions (e.g., logistic regression), 

selecting a decision threshold (e.g., make a positive prediction for values > .5 and vice versa) is a similar problem of 

optimization. Selecting the decision threshold to maximize F1, for example, may result in a model that over-predicts the positive 

class, since F1 can be increased by chance through over-prediction. 

We found that F1 chance levels were influenced by predicted and data class proportions which should thus be considered 

in parallel with F1 when examining model performance. We found that normalizing F1 relative to chance level in the same way 

as kappa (i.e., subtracting chance and dividing by 1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝐹1) resulted in a metric equivalent to kappa. There are, however, 

other choices of F1 normalization that could be considered in addition to the method analogous to kappa. Normalizing with the 

1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝐹1 denominator will scale the metric value in the range [–1, 1] only in the event of no over- or under- prediction. 

However, as seen in Figure 4, the maximum possible value of F1 can be significantly decreased by over-prediction. If some 

over-prediction is acceptable to avoid false negatives, then such normalization may be too conservative. F1 could instead be 

normalized relative to the maximum value possible for the level of over-prediction present, i.e., 𝑚𝑎𝑥 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐹1 −
𝑐ℎ𝑎𝑛𝑐𝑒 𝐹1. This normalization would be interpreted as the proportion of the distance between chance level and maximum 

possible F1, for the model’s level of over-prediction, that was covered by the model’s F1. More work is needed in the future to 

discover where this method and other normalization methods are effective, or not conservative enough, and how they compare 

to other metrics. 

Lastly, we calculated appropriate chance levels for precision, recall, and F1 in examples of previously published work 

where confusion matrices were reported or could be inferred from the results (Table 2). This suggests that a large-scale 

systematic review of student modelling literature is possible and could uncover trends that would further inform model 

evaluation practices. For instance, do models optimized for F1 tend to over-predict the positive class more than models 

optimized for kappa? Furthermore, it also suggests that reporting confusion matrices is a good practice, as it allows post-hoc 

calculation of discrete model metrics (and, in this case, chance levels) not considered by researchers before publication. 

5.3. Limitations and Future Work 

The evaluation of metrics for discrete models in this article was not without limitations. We identified several key limitations 

that also present opportunities for future work. First, while the discussed metrics are perhaps the most commonly reported in 

discrete student modelling research (Gardner & Brooks, 2017), there are other metrics worth investigating. For example, it is 

unclear how suitable Matthew’s Correlation Coefficient (MCC) might be for evaluating student model performance in cases 

of data and prediction imbalances. Future work should replicate this investigation with MCC and other metrics that may be 

suitable for evaluating discrete student models, such as Bangdiwala’s B. Additionally, measures such as precision, recall, and 

F1 that measure class-specific performance (almost always the positive class) can also be averaged across classes. Similarly, 

Pelánek (2017) notes that metrics are commonly averaged not only across classes but also across students and other levels of 

the data. Further research will be needed to understand the biases and chance levels of discrete model metrics in such use cases. 

Second, while the results discussed here provided some guidelines about when certain metrics would be more applicable 

than others for student modelling goals, it would be best to measure empirically the effect that choice of metric has on model 

ranking and selection. A larger number of published student models and simulated models should be created to explore 

precisely the effect of metric choice on the features selected in forward (and backward) feature selection, as well as fully 

trained models. For example, it is unclear whether choice of metric would have a significant influence on the number of features 

selected, or on the type of features selected. 

Third, we did not consider methods for calculating statistical significance of metrics relative to chance levels. For some 

metrics (e.g., kappa) the significance is well-defined. For others, such as F1, repeated randomization is often employed to test 

significance (Yeh, 2000). Statistical significance testing may be desirable in student modelling research, and ease of testing 

could perhaps influence choice of metrics. Furthermore, the relationship between F1 and kappa shown in this article suggests 

the existence of a closed-form statistical significance test for F1 that should be explored in future work. 

Finally, we considered metrics only for student models that produce discrete outcome predictions, but there are many 

student models that produce continuous predictions. We focused on discrete model metrics because of their prevalence in 

student modelling literature, and because related research had focused primarily on continuous metrics (e.g., Jeni et al., 2013; 
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Pelánek, 2015). However, there are still open questions for continuous metrics, such as the best way to choose a decision 

threshold for making discrete predictions from continuous predictions. In one example, Stewart, Bosch, & D’Mello (2017) 

optimized the threshold for F1, but optimizing for another metric might yield a different model. In future work, we will 

investigate choice of metric for threshold fitting more systematically as well, to inform best practices for student modelling. 

5.4. Concluding Remarks 

A variety of metrics are reported in research describing discrete student model evaluations, but their relationships with each 

other and with random chance level performance are not always made clear. We evaluated metrics on various published student 

models to uncover situations where metrics agree and disagree about student model performance, and what the implications 

are for selecting and reporting metrics. We found that predicted class proportions were especially influential on the values of 

recall and F1 for student models with over-prediction of the positive class, and established random chance levels for these 

metrics that account for prediction imbalance. Our findings provide some guidance on best practices (e.g., reporting chance 

level F1) and suggest fruitful opportunities for future research on the influence of metrics in all aspects of student model 

engineering. Eventually, a full evaluation of these metrics will lead to student models that are better suited for their specific 

purpose, and in turn improve instruction and understanding of the learning process. 
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